1.1. Invarience of physical laws, simultaneity 1.2. Time dilation 1.3. Length contraction 1.4. The Lorentz transformations 1.5. The doppler effect for electromagnetic waves 1.6. Relativistic momentum and energy
      2.1. Photons 2.2. The photoelectric effect 2.3. Photon production, photon scattering and pair production 2.4. The Heisenberg uncertainty principle for particles
      3.1. De Broglie waves and electron diffraction 3.2. The nuclear atom 3.3. Atomic line spectra and energy levels 3.4. The Bhor model 3.5. The laser 3.6. Blackbody radiation 3.7. The Heisenberg uncertainty principle for particles
      4.1. Wave functions 4.2. Particle in a box 4.3. Wave functions and normalization 4.4. Finite potential well 4.5. Patential barriers and tunneling 4.6. Quantum harmonic oscillator 4.7. Measurement in quantum mechanics
      5.1. Three-dimensional problems 5.2. Particle in a three-dimensional box 5.3. The hydrogen atom 5.4. The Zeeman effect 5.5. Electron spin 5.6. Many-electron atoms 5.7. X-ray spectra 5.8. Quantum entanglement
      6.1. Molecular bonds and molecular spectra 6.2. Solids and energy bands 6.3. Free-electron model if metals 6.4. Semiconductors 6.5. Semiconductor devices
      7.1. Nuclear properties 7.2. Nuclear binding and structure 7.3. Radioactive decay 7.4. Biological effects of radiation 7.5. Nuclear reactions
      8.1. Fundamental particles 8.2. Particle accelerators and detectors 8.3. Particles and interactions 8.4. Quarks 8.5. Symmetry and the unification of interactions 8.6. The expanding universe and its composition 8.7. The history of the universe
Chapters
1. Relativity
2. Photons: light waves behaving as particles
3. Particles behaving as waves
4. Quantum mechanics I - wave functions
5. Quantum mechanics II - Atomic structure
6. Molecules and condensed matter
7. Nuclear physics
8. Particle physics and cosmology